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REGRESSION ANALYSIS UNDER LINK VIOLATION 

University of California, Los Angeles and RAND Corporation 

We study the behavior of regression analysis when there might be some 
violation of the assumed link function, the functional form of the model 
which relates the outcome variable y .to the regressor variable x and the 
random error. We allow the true link function to be completely arbitrary, 
except that y depends on x only through a linear combination px. The slope 
vectbr $ is identified only up to a multiplicative scalar. Under appropriate 
conditions, any maximum likelihood-type regression estimate is shown to be 
consistent for p up to a multiplicative scalar, even though the estimate might 
be based on a misspecified link function. The crucial conditions are (1) the 
estimate is based on minimizing a criterion function L(8, y) which is convex 
in 8, where 8 = a + bx, (2) the expected criterion function E [ L ( a  + bx, y)] 
has a proper minimizer and (3) the regressor variable x is sampled randomly 
from a probability distribution such that E(bxl$x) is linear in p x  for all 
linear combinations bx. The least squares estimate, the GLM estimates and 
the M-estimates for robust regression are discussed in detail. 

These estimates are asymptotically normal. With the assumption that the 
regressor variable has an elliptically symmetric distribution, we show that 
under a scale-invariant n~ll~hypothesis $W = 0, the asymp- of the form H,: 
totic covariance matrix for $W is proportional to the one derived by treating 
the assumed link function as being true. The 'wa ld  test as well as the 
likelihood ratio test for a scale-invariant null hypothesis has the correct 
asymptotic null distribution after an appropriate rescaling of the test statis- 
tic to account for the proportionality constant between the two asymptotic 
covariance matrices. For normally distributed x, the rescaling factor for 
M-estimates is the same as the one used in robust regression, while the 
rescaling factor for GLM estimates is related to adjustment for overdisper- 
sion. Confidence sets can be constructed by inverting Wald's tests. 

The impact of the violation of linear conditional expectation condition 3 is 
discussed. A new dimension is added to the regression diagnostics by explor- 
ing the elliptical symmetry of the design distribution. 

A connection between this work and adaptive estimation is briefly dis- 
cussed. 

1. Introduction. Regression analysis is probably the most widely used sta- 
tistical method other than simple descriptive statistics such as means and 
frequency tables. Usually we assume a parametric model and then choose an 
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estimation method appropriate for this model. However, for empirical applica- 
tions, the assumed model is unlikely to be exactly true and the specification of 
the model can be somewhat arbitrary. A well-known example is the choice 
between the logistic and the probit regression. When the true model deviates 
from the assumed model, the regression analysis based on the assumed model 
might be inappropriate. 

There has been a good deal of research on the behavior of regression analysis 
under deviations from the assumed model. Quite often, the assumed model (or 
the ideal model) is a linear one, y = a + px + E, with Gaussian error E. Distribu-
tion robustness, as reviewed in Huber (1981), concerns the violation of the 
assumed error distribution (cf. Remark 1.2 a t  the end of this section). On 
the other hand, data may have to be transformed to follow a linear model and 
the correct transformation may be misspecified. Thus, for instance, the correct 
model may be 

logy = a + px  + E, 

but we may misspecify the transformation and assume 

Under the misspecified model, we might use the least squares regression of y1I2 
on x to estimate a and p. Does this apparently fallacious regression tell us 
anything? Under appropriate conditions on the regressor variable x, the answer 
is yes; see Sections 2 and 5. 

In the above example, we have misspecified the functional form of the model. 
More generally an assumed model can take a general form 

(1.1) Y = g ( a  + px, 4 ,  E - F(E) ,  
where g is a given bivariate function, the link function, which relates the 
outcome variable y to the regressor variable x and the stochastic error E, and F 
is the error distribution. 

In this paper we study the behavior of regression analysis when the assumed 
link function might be incorrect. We allow the true model to be completely 
arbitrary, except that the outcome variable y depends on the explanatory 
variable x only through a linear combination px. (See Remark 1.1a t  the end of 
this section for more discussion.) The conditional distribution of y given px  is 
allowed to be completely arbitrary. This is equivalent to allowing g and F to be 
both arbitrary and unknown, which implies that P can be identified only up to a 
multiplicative scalar (see Observation 1in Section 2). 

The population case is studied in Section 2 where we establish a general result 
(Theorem 2.1) that any maximum likelihood-type regression estimate is Fisher 
consistent for the slope vector P up to a multiplicative scalar, even though the 
estimate might be based on a misspecified link function, provided that (1) the 
regression is based on minimizing a criterion function L(8, y) which is convex in 
8, with 8 = a + bx, (2) the expected criterion function E[L(a  + bx, y)] has a 

minimizer and (3) the regressor variable x is sampled randomly from a 
distribution such that the conditional expectation E(bxlPx) is linear in px for 
any linear combination bx. 
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This result indicates that many maximum likelihood-type regression estimates 
are "robust" in the sense that even when the assumed model is grossly misspeci- 
fied, the result can still be meaningful. In the minimum, we can estimate the 
ratios P,/P, consistently; those ratios measure the substitutability of different 
components xj and x, of the regressor variable, and are the key quantities of 
interest in many studies. 

Condition 1 is satisfied for many important estimation methods, including 
least squares, M-estimates with nondecreasing influence functions and general- 
ized linear model (GLM) estimates with canonical link: The linear model is 
specified for the natural parameter (see also Section 3.5). The convexity property 
of the criterion is crucial here. Without the convexity, we may have inconsis- 
tency (see Section 2.4). On the other hand, sometimes the regression may be 
based on a more complicated type of criterion so our general result does not 
apply immediately. Such cases may be studied on an individual basis. We 
demonstrate one important case, namely the Cox regression estimate, which 
turns out to be consistent as well again, due to some convexity property of the 
criterion (see Section 2.5). Condition 2 is usually satisfied, but not always; see 
Sections 3 and 4. Condition 3 looks rather restrictive. I t  is satisfied when the 
regressor variable is normally distributed or is elliptically symmetric. The impact 
of violations of condition 3 is studied in Section 6. I t  is interesting to observe 
that Stein's necessary condition for adaptive estimation, simplified by Bickel 
(1982), holds under condition 3; see Section 7, where adaptive estimation is 
briefly discussed. 

Condition 3 has important implications in data collection and analysis. At the 
design stage when the levels of x can be chosen by the statistician, elliptically 
symmetric designs are favorable from the viewpoint of providing protection 
against link violations according to Theorem 2.1. On the other hand, if the data 
have already been collected and the distribution of x is not close to being 
elliptically symmetric, we may still conduct meaningful regression analysis on 
those subsamples of the data with the x distribution being closer to the elliptic 
symmetry. This is particularly attractive a t  the exploratory stage of data 
analysis; specific proposals to implement this are still under investigation. A 
simulation study is conducted to illustrate the role of elliptic symmetry in 
Section 6.4. There we see that a new dimension is added to the existing 
regression diagnostics by exploring this design condition. Bias bound and other 
asymptotic aspects are discussed in Sections 6.1-6.2. 

In Sections 3 and 4 we will discuss the GLM estimates and the M-estimates in 
detail. Under appropriate regularity conditions and some a priori verifiable 
conditions, we show that the existence condition (A.2) in Theorem 2.1 is valid for 
these estimates. However, detailed study on the likelihood equation (Section 3.3) 
reveals some inherent dangers in applying GLM with the natural parameter 
space being restricted (for example, the gamma family). 

Sampling behavior and inference are studied in Section 5. First, we establish 
strong consistency. Then we derive the asymptotic distribution for the regression 
estimates. Under the assumption (A.3'): the distribution of the regressor variable 
is elliptically symmetric and the asymptotic covariance matrix for the estimated 
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slope can be written as the sum of two matrices, the first one being propor- 
tional to the one derived by treating the assumed link function as being true and 
the second one being proportional to P'P. For all inference problems about P 
that are identifiable, the second matrix can be neglected. The proportionality 
constant for the first matrix can be estimated consistently. I t  follows that for 
any scale-invariant null hypothesis H,: PW = 0, the standard Wald and likeli- 
hood ratio tests based on the assumed link function have the correct asymptotic 
null distributions after being rescaled to account for the proportionality con-
stant. Inother words, those procedures are robust in validity after the rescaling. 
Note that non-scale-invariant hypotheses such as H,: PW = 1 are not identifi- 
able because P is identified only up to a multiplicative scalar. We can also invert 
the Wald test to construct confidence sets; they have to be cone-shaped. 

Under the stronger assumption (A.3"): The distribution of the regressor 
variable is normal and the above rescaling has interesting interpretations. For 
GLM estimates, the proportionality constant is analogous to the generalized X2 
usually used to adjust for overdispersion. For M-estimates, the rescaled asymp- 
totic covariance matrix coincides with what is usually used for the linear model 
in robust regression. In other words, the inference for robust regression is robust 
in validity not only against distribution violations but also against link viola- 
tions. For the least squares estimate, the rescaled asymptotic covariance matrix 
also coincides with the one based on the standard linear model. In other words, 
the standard linear model inference is robust in validity against link violations. 

We will postpone the review of related literature [in particular, Brillinger 
(1977, 1983)l until Section 2.6, after introducing the necessary notations and 
terminologies. Technical proofs are given in the Appendix. 

REMARK1.1. The assumption about the relationship between y and x made 
in this paper can be called a general regression model with one component. I t  can 
be generalized to allow k components: The conditional distribution of y given x 
depends on x only through k linear combinations P,x,. ..,PAx. The single 
component model can be viewed as a general form of additivity model. Multi- 
component models allow nonadditivity. 

REMARK1.2. In contrast to distribution robustness, "model robustness" is 
usually used when the deterministic part of the linear model is incorrect. Thus 
the true model may take the form y = px  + g(x) + E, where g(x) is an unknown 
function incorporated into the assumed model y = Ox + E to allow for model 
violation. Box and Draper (1959) assumed that g(x) can be parametrized by a 
linear model to account for higher order interactions or nonlinearity. See Kiefer 
(1973) and Galil and Kiefer (1977) for more discussion on this finite dimensional 
violation approach. On the other hand, infinite dimensional models for g(x) are 
studied in Huber (1981), Marcus and Sacks (1977), Li (1982, 1984), Sacks and 
Ylvisaker (1984) and Speckman (1979). The model violations considered in these 
papers are different from the link violation that we consider in this paper. 

2. Population case: Fisher consistency. We shall first describe the esti- 
mation methods considered in this paper. Then in Section 2.2, we discuss the role 
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of link violation in our robustness consideration. The main result of Fisher 
consistency for regression estimates is given in Section 2.3. Section 2.4 addresses 
the convexity condition required for the criterion functions used in deriving the 
regression estimates. Section 2.5 studies the Cox regression model and the partial 
likelihood estimate, which does not belong to the general type of regression 
estimates considered in the main result. Section 2.6 reviews related works. 

2.1. Estimation methods. We consider maximum likelihood-type regression 
estimates based on a specified one-parameter family of probability distributions 
{K,, 8 E O) for y and a linear relationship between 8 and x, 

We assume throughout this paper that the regressor variable x is sampled 
randomly from a nondegenerate probability distribution Q(x) in R P .  Suppose Ks 
has a density ke(y) with respect to an appropriate carrier measure v(y). Then 
the maximum likelihood estimate of (a,  P) is a solution of the following mini- 
mization problem: 

n 

(2.2) minimize n-' L ( a  + bx,, y,), 
i =  1 

where 

(2.3) 

The consistency of m.1.e. when the assumed model (2.1) is true can be shown 
under certain regularity conditions. 

We shall consider the regression estimate based on minimizing (2.2) for any 
criterion L(8, y)  that is convex in 8. 

An important special case which we shall study in detail is the class of 
estimates based on the generalized linear models [GLM; see, e.g., Nelder and 
Wedderburn (1972)l with canonical link: We assume that {KO) is a natural 
exponential family (NEF). The criterion function (which will be called the NEF 
criterion) can be written as 

where +(8), the cumulant generating function for y, is strictly convex. The 
estimate (&, B )  based on this criterion function will be referred to as the GLM 
estimate. In Sections 3 and 5, we shall study the behavior of the GLM estimate 
when the true model may deviate from the assumed GLM. Note that the 
squared error criterion 

is a special case of the NEF criterion. 
I t  is not always necessary to formulate criterion functions via probability 

distributions. In particular, we will also consider location invariant criterion 
functions 
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for some convex function p which might not correspond to a proper probability 
distribution. These criterion functions result in the M-estimates for robust 
regression, whose behavior under distribution violation has received extensive 
study; see, e.g., Huber (1981) or Portnoy (1985). We give results in Sections 4 and 
5 for the behavior of M-estimates under link violation, which is a more general 
form of violation than distribution violations. Note that in (2.5) and (2.6), we 
have subtracted p(y) from p( y - 0 )  to eliminate unnecessary moment condi- 
tions; see Section 4. 

Of course some nonconvex criteria have also been used in many situations. An 
example is the Cauchy distribution for the location family. Nonconvex criteria 
can have undersirable numerical properties, such as multiple local minimizers. 
Furthermore, the asymptotic behavior for the resulting estimates may also be 
undesirable; see, e.g., Diaconis and Freedman (1982) for results in the robust 
location estimation problems and see Section 4 for more discussions. 

In many situations the criterion function has nuisance parameters. For exam- 
ple, we might have a dispersion parameter 

L ( e , a ,  Y )  = -0-'  log k,(y), 

where a is an unknown scalar which does not depend on x. The quasilikelihood 
functions of the above fonn are studied extensively in the GLM and related 
literature; see, e.g., Wedderburn (1974), McCullagh (1983), Nelder and Pregibon 
(1986) and Efron (1986). The nuisance parameters might not affect the ranking of 
the criterion in terms of 0. (The dispersion parameter above is an example.) In 
this case we can use any admissible values of the nuisance parameters to derive 
point estimates for (Y and p. However, the nuisance parameters might affect the 
Fisher information and need to be considered in making inference. We will 
discuss GLM with a dispersion parameter in Section 5. 

2.2. Link misspecification. In empirical applications, i t  is rare for the speci- 
fied model (2.1) to hold exactly. In this paper, we assume that the true model has 
the same form (2.1), but with a different one-parameter family: 

Y - HAY),  

e = + px.(Y 

The family {H,) is allowed to be arbitrary and unknown. (The specified 
family { K , )  is usually our speculation about what {H,) should be.) This is 
equivalent to assuming that the conditional distribution of y given x depends 
only on px and is arbitrary and unknown otherwise. We will refer to models of 
form (2.7) as the general regression models. 

The class of general regression models is very rich, including transformation 
models [see, e.g., Box and Cox (1964) and Bickel and Doksum (1981)], Efron's 
(1982) general scaled transformation family (GSTF), dichotomous regression 
models, censored regression models, projection pursuit regression with one ridge 
component [Friedman and Stuetzle (1981)l and the generalized linear models 
(GLM). 
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Any given general regression model of form (2.7) can be expressed in the link 
function form (1.1) as 

Specifying a model of form (2.1) is equivalent to specifying a link function g and 
an error distribution F in (1.1). The specified model is subject to link violation: 
The true model has the same form (1.1), but with a different link function 
and/or a different error distribution. If the specified link function g is believed 
to be correct, while the specified error distribution F might be wrong, we have 
distributional violation. 

The correspondence between models of form (2.7) and (1.1) is not unique: The 
same one-parameter family {K,) can correspond to different pairs (g, F )  of link 
functions and error distributions. For models of form (1.1), we can always absorb 
the error distribution F into the link function using the inverse c.d.f. 

g (0 ,  E )  = g(e ,  F-l(u)) = g"(0, u) ,  u - U(0,l) .  

Therefore we can always assume that the error distribution is uniform over 
(0,l). I t  follows that we need only specify the link function g and link violation 
is equivalent to the misspecification of the link function g". (Distributional 
violation can therefore be viewed as a special type of link violation.) 

Under link violation, we allow both the link function g and the error 
distribution F to be arbitrary and unknown. In particular, g need not be 
monotonic or invertible and F need not be symmetric. The following is an 
important observation. 

OBSERVATION1. When the link function g is unspecified, the intercept a is 
not identified and the slope vector P is identified only up to a multiplicative 
scalar. (Any location-scale change in a + px can be absorbed into the link 
function.) 

When g is unspecified, the best we can achieve is to estimate the direction of 
the slope vector p. (In other words, we can estimate the ratios p,/P,, but not the 
magnitudes of the components Pj.) For power transformation models, there have 
been some controversial views on the interpretation of slope vector fl [see 
Hinkley and Runger (1984), with discussion]. However, the ratios pj/Pk do have 
a simple interpretation: They measure the amount of treatment x, required to 
match the effect of a unit of treatment xj. Duan (1986) studied the power 
transformation models in future detail. 

REMARK 2.1. Discrete Q(x) will not be considered in this section; the 
direction of p is not identifiable in this case. 

2:3. Fisher consistency. We shall study the large sample behavior of regres- 
sion estimates based on a specified model (2.1) when the true link function is 
unknown. Thus our observations (y,, x i )  are i.i.d. with the conditional distribu- 
tion of y given x determined by (2.7), or equivalently (1.1), and the marginal 
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distribution 

(2-9) 

By the strong law of large numbers, 

if the expectation is well-defined. Call the right-side term the expected criterion 
and write 

R ( a ,  b) = E L ( a  + bx, y) .  

In this and the next two sections, we shall consider the minimization of the 
expected criterion. In other words, we shall first demonstrate the Fisher consis-
tency property of the estimate based on L. Under appropriate regularity condi-
tions Fisher consistency often implies strong consistency, which is studied 
further in Section 5 .  

In order to consider the minimization of the expected criterion, we need to  
consider the domain for (a ,  b). For convenience, we now restrict to a domain 
that  is stricter than necessary. Later at the end of this section we shall discuss 
this domain problem in further detail. 

Define i2 = {(a, b): R(a, b) is well-defined and is finite). Assume that 

(A.0) i2 is a nonempty convex set in Rpi l .  

THEOREM2.1. Under (1.1) and (2.9), the minimization problem 

(2.10) minimize R ( a ,  b) over ( a ,  b) E i2 

has a solution (a*, P*) such that P* is proportional to P: 

(2.11) P* = YP 
for some scalar y, provided that (A.0) and the following conditions hold: 

(A.l) The criterion function L(B, y) is convex in 0 with probability 1. 
(A.2) The conditional expectation E(bx1Px) exists and is linear in px  for all 

b E RP. 
(A.3) There exists a proper solution for (2.10). 

PROOF.Let a superscript over the expectation sign E denote conditioning in 
taking the expectation. Then by Jensen's inequality, 

~ ( a ,b) = EEB">&L(~+ bx, g ( a  + Px, e ) )  2 E L ( a  + E B x , E b ~ ,Y )  

= E L ( a  + ( c  + dbx),  Y )  

for some c, d E R. Here we have used (A.2) to obtain the last equality. Now the 
theorem follows immediately. 

If the inequality in the proof of this theorem can be replaced by a strict 
inequality for all b not proportional to P, then all minimizers of (2.10) must fall 
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along the direction of P. Thus any regression slope estimate based on minimizing 
the criterion function L(8, y)  is Fisher consistent for P up to a multiplicative 
scalar. This is the case, for example, when the criterion is strictly convex in 8. 
When the convexity of L(8, y)  is not strict, we need additional assumptions to 
reach the same conclusion. Nonstrict convexity will be studied further for the 
location invariant criteria in Section 4. 

The existence condition (A.3) does not always hold. An example is in the 
application of logistic regression where wehave a degenerate population with a 
perfect discriminant function fix: y = 1if px > - a  and y = 0 if px  < -a.  

A direct verification of the existence condition (A.3) may be complicated since 
the dimension of the minimization domain is high. A careful examination of the 
proof of Theorem 2.1 reveals that we may cut down the dimension to 2 by 
dealing only with the minimization problem given in'the following condition 
which may replace condition (A.3) in Theorem 2.1: 

(A.3') There exists a proper solution to the minimization problem 

(2.12) minimize R ( a ,  c)  over ( a ,  c) E d ,  

where a and c are real numbers, R(a,  c) = R(a,  cp) and d = {(a,c): 
( a ,  cP>E a). 

The following lemma further reduces this two dimensional minimization 
problem to a one dimensional minimization problem, which is easier to verify 
and will be used in Sections 3 and 4. 

LEMMA2.1. Assume that d is open and contains the origin. The following 
condition implies (A.3'): 

(A.3") For any (a ,  c) E d ,  the solution set for the minimization problem 

(2.13) minimize R(a t ,  ct) overt E {t: ( a t ,  ct) E a ) ,  

is nonempty and is bounded away from the boundary of {t: (at ,  ct) E 0) .  

PROOF.First observe that R(a, c) is a convex function of (a ,  c) over the 
open domain 0 and is therefore continuous. Suppose that (2.12) does not have a 
proper solution. We can take a sequence (a,, c,) such that ~ ( a , ,c,) tends to 
inf { ~ ( a ,c): ( a ,  c) E a ) ,  but {(a,, c,): n = 1,2,... ) does not have an accumula-
tion point in 0 (otherwise the lemma is proved). By compactness, we can find a 
subsequence, also denoted by (a,, c,) for convenience, such that the unit vector 
a: + c ; ) p 2  . (a,, c,) converges to some vector (a,, c,). Let T be the solution 
set for (2.13) with a = a,, c = c,. Since T is bounded, we may take three points 
t, < to < t,, such that to E T and t,, t, 64 T. By the continuity of ~ ( a ,c), we 
can take two small open balls with centers a t  (aoti,coti), i = 1,2, such that for 
any point ( a ,  c) in each ball, R(a, c) > R(a,t,, coto). Now consider the line 
segment connecting (a,, c,) to (a,t,, coto). For large n, this line segment 
intersects one of the two open balls. Therefore by convexity, R(a,, c,) > 
R(a,t,, coto).I t  follows that (a,t,, coto)should be a minimizer for (2.12). 
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The domain condition in this lemma is usually satisfied for many important 
estimation methods, including the M-estimates and the GLM estimates; see 
Sections 3 and 4. Furthermore, Lemma 2.1 does not depend on the fact that fi is 
two dimensional, and can be generalized to higher dimensions with essentially 
the same proof. In particular, the existence condition (A.3) may also follow from 
(A.3") with fi replaced by 3 ,  if 3 is open and contains the origin. 

The rest of this section will be devoted to the discussion of the domain 
condition (A.0). First we define the domains on which the expected criterion can 
be defined. 

DEFINITION2.1. The extended domain 3, L RP" is the set of ( a ,  b) for 
which L ( a  + bx, y)  is defined with probability 1.The proper domain 3, L 3, is 
the set of ( a ,  b) for which the expected criterion is well-defined, i.e., the positive 
and the negative parts of L cannot both have infinite expectations. The inte-
grable domain 3 g 3, is the set of (a ,  b) for which the expected criterion is finite 
[this is the domain considered in condition (A.O)]. 

We shall assume that L(. ,  y) is defined on an interval (may be unbounded). 
From this and (A.l) it follows that 3, is'convex. To avoid trivial cases we further 
assume that 3, is indeed p + 1dimensional, i.e., it is not contained in any affine 
subspaces with dimensionality less than p + 1. Otherwise, we can express a + px  
differently and thus reduce the dimensionality of x. 

LEMMA2.2. The expectedcriterion (2.10) is always well-defined, i.e., 3, = a,, 
and cannot assume the value - co, provided that (A.l) and the following 
condition hold: 

(A.0') There exists a t  least one interior point in 3. 

The proof of this lemma is given in the Appendix. I t  follows from the lemma 
that Theorem 2.1 can be extended. 

COROLLARY2.1. Theorem 2.1 is valid with condition (A.0) replaced by (A.0') 
and  the integrable domain 3 in the minimization problem (2.10) replaced by the 
extended domain 3, (see Definition 2.1). 

PROOF. Under (A.l), (A.0') and the fact that R(a,  b) is a convex function, 3 
is a convex set. Now the proof of Theorem 2.1 applies. 

2.4. Nonconvexity and normality. The conclusion of Theorem 2.1 may still 
be true without convexity condition (A.l), providing that (A.2) is replaced by the 
much stronger condition: 

.(A.2') The regressor variable x is normally distributed. 

THEOREM2.2. Under (1.1), (2.9), (A.O), (A.2') and (A.3), the minimization 
problem (2.10) has a solution (a*, P*) such that (2.11) holds. 
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PROOF.Because of (A.27, for any b, we may write bx = tpx + e', with e' 
independent of px  and E. Then 

R ( a ,  b) = E L ( a  + bx, g ( a  + px, e)) 

This proves the theorem. 

I t  can be seen from the proof that condition (A.2') can be replaced by the 
weaker condition: 

(A.2") For each b E R*, there exists some constant t such that bx - tpx is 
independent of px. 

The only case that (A.2") will hold without knowing P is when we have (A.2'). 
The following is an example where the conclusion of Theorem 2.1 is false due 

to the violation of (A.l) and (A.2'). 

EXAMPLE1. Suppose p = 2 and x = (x,, x,)' follows a uniform distribution 
on the circle X; + x i  = 1. Assume that y = x, (so E = 0) and the criterion 
L(0, y) 2 0 with the equality holding only for 0 = + d l . Now it is clear 
that  E L ( a  + bx, y) 2 0 with equality holding only for a = 0, b = (0, 1). Thus 
the minimizer of (2.10) is a *  = 0, P* = (0, + l), but the true j3 is (1,O). 

2.5. Cox regression. The conclusion of Theorem 2.1 may still be true for 
other types of regression. We illustrate this point by studying the case of Cox 
regression, a widely used model in survival analysis. 

Suppose y is the survival time. Assume no censoring now (see Remark 2.2 for 
the censoring case). Cox (1972) considered the following model for y: 

where X(ylx) denotes the hazard function given x and h,(y) is the baseline 
hazard. Cox proposed estimating P by maximizing the partial likelihood 

where R(y,) denotes the risk set a t  time y,, namely, R( y,) = {j: yj 2 y,). 
The population version of maximizing the logarithm of (2.15) is 

where (J, %) denotes an independent replicate of (y, x) and I is an indicator 
function (taking values 0 or 1, depending on J < y or J 2 y). 
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THEOREM2.3. Under (1.1), (2.9), (A.2) and 

(A.3"I) there exists a proper maximizer for (2.16), 

the maximization problem (2.16) has a solution P* satisfying (2.11). 

PROOF. This follows easily from the observations that for some c, d ,  

EYexp(bk)I(y 2 y )  = EYEy , 9 , B f  exp(bk)l(y 2 y )  

2 E Y exp( EB'bk) . I(9 2 y )  

= EYexp(c+ dpk)  . I ( y  2 y)  
and that 

Ebx = E ( c  + dpji). , 

REMARK2.2. Partial likelihood estimates based on a specified model taking 
the same form as (2.14) but with the exponential function being replaced by some 
other function may not share the same Fisher consistency property we demon-
strate in Theorem 2.3. 

REMARK2.3. When there is a censoring process involved, Tsiatis (1981) 
proved that the partial likelihood estimate is consistent providing that the 
censoring time is independent of the survival time given the covariate x and that 
the specified model (2.14) is true. However, we are unable to extend the result of 
Theorem 2.3 to this general case. 

2.6. Related work. The proportionality result (2.11) in Theorem 2.1 has been 
known for various special cases. In this section, we give a brief review of related 
published works. The earliest related result that we know about is Fisher's (1936) 
work on the relationship between the discriminant function and logistic regres-
sion. Haggstrom (1983) gave a comprehensive discussion of the OLS estimation 
when the true model is the logistic regression model, a special case of the general 
regression model (2.1). 

Brillinger (1977, 1983) gave a general result for the OLS estimates. Under 
the assumption that x is normally distributed, Brillinger showed that (1) the 
OLS slope vector fi is strongly consistent for the true slope vector P up to 
a multiplicative scalar, when the true model has the additive-error form 
y = g ( a  + px) + e and (2) &(fi - P*) is asymptotically normal with mean 0 
and covariance matrix 

(2.17) u2$- l  + $ - ' E { ~ ( X ) ~ ( X  - p)(x - p)'}$-l, 

where h(x) = g ( a  + px) - a* - P*x, x - N(p ,  $) and u 2  = Var(e). Brillinger 
also noted that the key to (1) is that x has linear conditional expectations, and 
the strong consistency for OLS estimate holds under more general models such 
as the Cox regression model, censored regression, etc. Brillinger also made an 
interesting discussion on conditional inference (see Remark 6.2 for more details). 
In addition, similar results were shown to hold in some important time series 
problems. 
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Our interest in this area was motivated in part by surprise on learning of 
Brillinger's results. Theorems 2.1, 2.2, 2.3 and Theorem 5.1 extend Brillinger's 
result 1 to estimation methods other than OLS. We also extend Brillinger's 
result 2 in Section 5.3 [see (5.2.4)] and give a useful new expression for the 
asymptotic covariance matrix (Theorems 5.3.1 and 5.3.2) which relates to the 
usual asymptotic covariance matrix based on the assumption that the specified 
model is correct. 

Goldberger (1981) derived the result (2.11) for a truncated linear model, 
assuming that the ideal data follow a linear model y = a + x p  + E, with both x 
and E being normally distributed, but the datum (y, x) is observable only if the 
dependent variable y falls inside a known subset Q of the real line. Chung and 
Goldberger (1984) generalized this result to a broader context in which the 
underlying model is not necessarily linear and the explicit selection rule is 
extended to allow either an arbitrary transformation (including censoring) of the 
dependent variable or a probabilistic selection rule. Without any assumptions of 
normality, Chung and Goldberger obtained (2.11) for the OLS estimates for the 
case of an arbitrary transformation under the assumption that E(x1y) is linear 
in y and for the case of probabilistic selection under the additional assumption 
that Var(x1 y) is constant. 

Greene (1981, 1983) derived the same result for the OLS estimates for the 
Tobit model, the truncated regression model and the probit model, under the 
same normality assumption in Goldberger (1981), Ruud (1983) derived the same 
result for the maximum likelihood estimates in discrete choice models under the 
weaker assumption that x has linear conditional expectations. Ruud also argued 
that  the failure to identify the absolute magnitude of the slope vector is 
unimportant and that "the ratios of the slopes yield the correct, relevant 
economic information about welfare trade-offs." Both Brillinger and Greene 
demonstrated by empirical studies that for some cases the proportionality result 
may still approximately hold under a modest violation of (A.2). 

3. GLM estimates. Consider the NEF criterion (2.4). Since #(8) is strictly 
convex in 8, condition (A.l) is satisfied; thus the solution of (2.10), if any, is 
unique. We need to verify the existence condition (A.3). The following moment 
condition implies that 52, = !2 [see Definition 2.1 and (A.O)]: 

(B.1) 	 Elyl < a ,  Ellxll < cf3, Ellx~ll< a ,  
E l # ( a  + bx) I < oo for all ( a ,b) E !do. 

3.1. Unrestricted natural parameter space. When the natural parameter 
space O is the whole real line, we have !2 = RP+' and fi = R2. Thus we can 
apply Lemma 2.1 to verify (A.3) using (A.3"). 

LEMMA3.1. The existence condition (A.3") holds for the N E F  criterion (2.4) 
with an unrestricted naturalparameter space O = Rprouided that (B.1) and the 
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following condition hold: 

(B.2) With probability 1, the conditional expectation E (  yl fl x) belongs to the set 
{#ye): e E O). 

PROOF.For any (a ,  c), denote U = a + cpx. Since R(at, ct) is convex in t, it 
has a proper solution if the equation 

a -
-R(at, ct) = 0 
a t  

has a proper solution. Interchange the expectation and differentiation to get 

EUy = E#'(tU)U. 

Since the right-side term is nondecreasing in t, it'suffices to show that 

(3.1) lim E # ' ( ~ u ) u  < E U ~< lim E#'(tU)U. 
t - r - 0 3  t- 03 

Denote the limits of #'(t) as t + + oo by #'(+ oo) (they can be infinite). Clearly, 

lim E#'(tU)U = #'(+ oo)EU++ #'(- oo)EU-, 
t- w 

where U+ and U- are the positive and the negative parts of U, respectively (i.e., 
U+= U if U > 0 and U+= 0 if U I 0; Up= U - U,). On the other hand, 

EUy = E[UE'~] = E[U+E'~]+ E[U-E'~] 

< EU++'(+ oo) + El--#'(- a), 

proving the second inequality in (3.1). In a similar way, the first inequality in 
(3.1) can also be verified. 

Applying the lemma to Theorem 2.1, we have 

THEOREM3.1. The GLM estimate, based on a NEF criterion (2.7) with an  
unrestricted natural parameter space O = R is Fisher consistent in estimating 
the slope vector p up to a multiplicative scalar [i.e., (2.10) has a unique solution 
and  (2.11) is satisfied] under (A.2), (B.l) and (B.2). 

Note that #'(8) is the expectation for the natural exponential family. Thus 
condition (B.2) requires that the true conditional expectation E(y1x) be inside 
the range of the expectations specified by the assumed GLM. In empirical 
applications we usually have the prior knowledge about the range of the outcome 
variable; thus we can make an appropriate choice of GLM which satisfies this 
condition. 

REMARK3.1. The moment condition Elyl < oo and Ellxyll < oo in (B.l) is 
necessary. In  particular, i t  is well-known that the least squares estimate is not 
consistent if Elyl = oo or Ellxyll = oo. To accommodate the possibility Elyl = oo 
or Ellxyll = oo, see the discussion on the M-estimate in next section. 
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REMARK3.2. I t  can be seen from the proof of Lemma 3.1 that (A.3") holds 
for any direction (a ,  b) [with ~ ( a ,  c) defined as R(a ,  cb); b may be different 
from P] provided that (B.2) is replaced by the slightly stronger condition: 

(B.2') With probability 1, the conditional expectation E( ylx) belongs to {#'(O): 
e E O). 

REMARK3.3. When the range of t is an interval ( 8 ,  i), the proof still holds 
provided that (3.1) holds with - cc, + cc replaced by _t, i. 

3.2. Restricted natural parameter space. When the natural parameter space 
O is restricted, the domains a, [=  C! under (B.l)] and 0 are also restricted. 
Denote the lower and the upper bounds of O by @ .and 8, respectively, and 
assume a t  least one of them is finite. Then we have 

(3.2.1) a,= C! = { ( a ,  b): @ < a + bx < 8 with probability 1) 

and 

(3.2.2) 0 = { ( a ,  c) :  9 < a + cpx < 8 with probability 1).  

Let B and B be the essential lower and upper bounds of px. If 4 and B are 
both infinite, the inequality in (3.2.2) cannot be satisfied unless c = 0, an 
uninteresting degenerated case. Thus we assume that a t  least one of the bounds 
is finite. In addition, we assume B < 0 < B without loss of generality. 

If px  has a point mass a t  each of the boundary points B and B (fi contains 
no boundary points), we can apply Lemma 2.1. Lemma 3.1 can be shown to hold 
for this case by a similar proof (see Remark 3.3). Therefore the conclusion of 
Theorem 3.1, namely the Fisher consistency result, is also true. The result 
remains true when contains some boundary points; the details are omitted. 

3.3. Likelihood equations. The GLM estimate is usually obtained by solving 
the sample likelihood equations 

n 

(3.3.l) n-' x [x,y, - x,#'(a + bx,)] = 0, 
i =  1 

The population version of (3.3.1) and (3.3.2) is 

(3.3.3) E x y  - Ex# ' (a  + bx) = 0, 

(3.3.4) Ey - E#'(a + bx) = 0, 

which are based on the partial derivatives of the expected criterion R(a,  b) with 
respect to b and a. [It follows from (B.l) that these expectations exist.] In this 
section we study the relationship between the minimization problem (2.10) and 
the likelihood equations (3.3.3) and (3.3.4). 

Throughout this section we assume conditions (B.l) and (B.2). In particular 
we have by Lemma 3.1 that the solution (a*,P*) to the minimization problem 
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(2.10) exists. If the domain & (= &,) is open, we have by convexity of R(.,a )  

that the population minimizer (a*,P*) is also the unique solution to the popula- 
tion likelihood equations (3.3.3) and (3.3.4). On the other hand, if the domain & is 
not open, the population minimizer might be a boundary point of 52, in which 
case the likelihood equations (3.3.3) and (3.3.4) might not have a solution. We 
now discuss this problematic case in some detail. 

In order for the domain 52 not to be open, i t  is necessary for the natural 
parameter space O to be restricted and the random variable px not to have a 
probability mass a t  both essential bounds B and B.To be more specific, we focus 
on the case that O is a half line, assumed to be ( - co,O) without loss of 
generality. We also assume that fix does not have a probability mass a t  B.The 
domain fi given in (3.2.2) is then a cone with the vertex a t  (0,O) and it contains 
the edge {(a, c): (c > 0, a + cB) = 0). 

THEOREM3.2. Assume that (y, x) follows the general regression model (1.1) 
and (2.9) with unknown link function g and unknown error distribution F. 
Assume that px  does not have aprobability muss a t  its essential upper bound B. 
For the GLM estimate based on a NEF criterion with the restricted natural 
parameter space O = ( - co, 0) there exist g and F such that the minimization 
problem (2.10) has a solution but the population likelihood equations (3.3.3) and 
(3.3.4) do not have a solution, even though (A.2), (B.1) and (B.2) hold. 

The proof is given a t  the end of this section. We can characterize the 
conditions on g and F for the existence of a solution to the population likelihood 
equation (see Lemma 3.2), but unlike (B.2), these conditions cannot be verified 
a priori. 

Although the population likelihood equations (3.3.3) and (3.3.4) might not 
have a solution, the sample likelihood equations (3.3.1) and (3.3.2) always have a 
solution, provided that all observed yi's fall inside the range {$'(O) = O E 0). 
To see this, consider the minimization problem (2.10) with the random vector 
(y, x) being uniformly distributed over the observed vectors {( y,, xi): i = 
1,. . . ,n). The extended domain 52, over which the sample criterion function 

1 n 

Rn(a ,  b) = L ( a  + bx,, y,) 
n , = I  

is defined is the intersection of n open sets, 
n 


fin = n { ( a ,  b):  e < a + bxi < 8). 
i =  1 

Therefore the domain 52, is open. Hence if the sample minimization problem has 
a solution, i t  must satisfy the sample likelihood equations (3.3.1) and (3.3.2). 
Following from Remarks 3.2 and 3.3 and the discussion that immediately follows 
the proof of Lemma 2.1, the sample minimization problem has a solution. [To see 
that  Remark 3.3 applies, note that if t is finite, then for some i, Z(a + cbx,) = 8 
or 8, depending on whether a + cbx, is positive or negative. I t  follows that #'(@) 
or $'(O) is infinite; thus the second inequality in (3.1) holds. Details are omitted.] 
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The sample domain a,, defined above converges to a, although for each n, 
c a,,.This means that the solution for (3.3.1) and (3.3.2) may occur in the thin 

strip 0, - if the population equations (3.3.3) and (3.3.4) do not have a 
solution. Hence the numerical solution to (3.3.1) and (3.3.2) is highly unstable. 
The curvature of the sample criterion function R,(a, b) is very large in the strip 
a,, - a. 

Now we shall prove Theorem 3.2 by characterizing the conditions on g and F 
for the existence of the solution for (3.3.3) and (3.3.4). Write A = px. Assume 
that  (y, x) follows the general regression model (2.8) and (2.9). First note that by 
multiplying P to (3.3.3), we see that a necessary condition for (3.3.3) and (3.3.4) 
to have a solution along the direction P is to have 

(3.3.5) EyA = E+'(a + cA)A, 

(3.3.6) Ey = E+'(a + cA). 

For a given marginal distribution Q(x),whether a solution to the population 
likelihood equations (3.3.5) and (3.3.6) exists or not might depend on the true link 
function g(8, E) and the true error distribution F(E). We define 

D,= {(Ey, EyA) : y follows (2.8) for some g ,  Fand satisfies (B.l), (B.2)), 

D2 = ( (E+' (U + cA), E+'(a + cA)A): ( a ,  c) E 0) .  
I t  is clear that D2 is a subset of D,. If Dl and D2 are the same, then for any true 
model of the form (2.8), the population likelihood equations have a solution. This 
would be the case, for example, if the domain fi is open. However, if the domain 
is not open, D2 might be a proper subset of D,. The following lemma confirms 
this statement and therefore proves Theorem 3.2. For convenience, we assume 
Ex = 0 without loss of generality. 

LEMMA3.2. Assume (1.1), (B.l) and (B.2), O = ( - co,O), A (= px) satisfies 
the assumption in Theorem 3.2 and EA = 0. Then the domains D, and D2 can 
be characterized as follows: 

(9  Dl = ((11, 0:71 > +'(- 001, B(7) - #'(-co)) < l < RTJ - +'(-co))) 
[which equals R2 if +'( - co) = - co]. 

(ii) D2 = ((77, l ) :  TJ > +I(-co), E+'(c,(A - B))A I l 5 E+'(F,(A - B))A), 
where c, (F,, respectively) is the solution of c such that E+'(c(A - B)) = TJ 

[respectively, E+'(c(A - B))= TJ] is satisfied. 

Moreover, D2 is a proper subset of Dl. 

The proof of the lemma is given in the Appendix. The following example 
illustrates the use of this lemma. 

EXAMPLE2. Consider the gamma family. The natural parameter space is 
O = ( - m,0) with the mean +'(8) = -8-' and + ' ( - a )  = 0. Thus c, = 

-TJ-IE(A - B)-l  and c, = -TJ-IE(A- B)-' . A simple calculation shows that 
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Compared with 

D, = ((77,l): 77 > 0, 77B < l <d), 
we see that D2 is a proper subset of D,. Hence if the true model has a 
mean-covariance pair (Ey, EyA) falling outside D,, then the population likeli- 
hood equations (3.3.3) and (3.3.4) do not have a solution. 

REMARK3.4. Using conditional expectation argument, it is also easy to 
verify directly that the solution of (3.3.5) and (3.3.6) will yield a solution of 
(3.3.3) and (3.3.4). However, i t  would not be immediately clear whether or not 
the nonexistence of the solution for (3.3.5) and (3.3.6) implies the nonexistence of 
the solution for (3.3.3) and (3.3.4) unless we have shown that the solution for the 
minimization problem (2.10) must take the form (a,'cA), which we have done in 
Theorem 3.1 and the discussion in Section 3.2. 

3.4. Noncanonical link. We have restricted our discussion of GLM's to those 
with canonical link (the natural parameter 8 is related linearly to the regressor 
x), mainly because this results in a convex criterion function. Alternatively, one 
might specify a GLM with a noncanonical link: The natural parameter 8 is 
related linearly to the regressor x after a nonlinear reparametrization h(-) ,  

(3.4.1) 8' = a + px = h(8) .  

The reparametrization is usually taken to be invertible. The criterion function is 
then 

If the range of y is unbounded both from below and from above, the criterion 
function cannot be convex in 8' for all y. If the range is bounded from at  least 
one end, the criterion function (3.4.2) may or may not be convex in 8', as 
illustrated in the following example. 

EXAMPLE A common reparametrization for the gamma family in Example 3. 
2 is 

8' = log(-8). 

The criterion function for this parametrization is 

which is strictly convex in 8' provided that y > 0, a condition which should hold 
for any reasonable application of the gamma family. 

Alternatively, if we take the reparametrization 

9'' = 82, 

the criterion function is 

L(8", y )  = yJB'I - (log 8")/2, 

which is concave in 8" for y2 > 1/8". 
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4. M-estimates. The M-estimate, based on the minimization of the location 
invariant criterion (2.9), is usually proposed to guard against derivations from 
the assumed error distribution in the linear model y = a + (3x + E .  The criterion 
p is usually chosen to be convex and to have a bounded influence function. 
Asymptotic results can be found in Huber (1981),'Yohai and Marrona (1979), 
Cheng and Li (1984), Portnoy (1985), etc. For nonconvex p, the M-estimate can 
be inconsistent even for the location models [see Diaconis and Freedman (1982)l. 

We now study the behavior of the M-estimate under (2.1) which allows for 
deviations from the linear model both in the error distribution and the link 
function. We shall assume the following conditions: 

(C.1) p is convex on R such that lim,, ,,p(x) = + cc. 
((2.2) The (one-sided) derivative p' of p satisfies the condition that there exist 

positive constants K, and K2 such that for any 8,8', 

(C.3) Ellx112 < cc and Elpf(y)12 < a. 

Condition (C.2) means that the tails of p do not go to the infinity faster than 
the squared error criterion (2.5). The conditions are commonly assumed in the 
robustness literature. I t  can be shown that (C.1)-(C.3) imply that Q is the entire 
R p i 1 ;  thus (A.0) is satisfied. I t  follows that fi = R2,SO Lemma 2.1 is applicable. 
We need to verify (A.3"). 

LEMMA4.1. Conditions (C.1)-(C.3) imply condition (A.3"). 

PROOF.For any fixed (a ,  c), let U = a + cpx. The one-sided right derivative 
of 

with respect to t can be written as 

where U+ and U- are the positive and negative parts of U, respectively 
(U++ Up= U). Here p' can be treated as the left and the right derivatives for 
the first and the second terms, respectively. From (C.l), we may find positive 
constants a ,  a', M such that pl(t) > a for t > M and pl(t) < -a '  for t < -M. 
Thus applying the monotone convergence theorem we have 

lim - Epl(y  - tU)U+> alEU+.  
t--, + W  

Similarly we can also show that 

lim - E p f ( y - tU)U-> -aEU-. 
t + + w  

Therefore the derivative (4.1) is positive for t + + cc.The same argument also 
shows that (4.1) is negative for t + - cc.This implies that E [p(y - tU)  - p( y)] 
has a minimizer, completing the proof of our lemma. 
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Now applying Theorem 2.1, we see that a t  least one solution of (2.10) will be 
in the right direction. For a strictly convex p, due to the uniqueness of the 
solution, we may conclude that the corresponding M estimate is Fisher consis-
tent for estimating the slope vector (3 up to a multiplicative scalar. For the case 
of nonstrict convexity, we have the following theorem. 

THEOREM4.1. Assume conditions (A.2), (C.l)-(C.3) and the following condi-
tions: 

(C.4) For each b not proportional to (3, with probability 1, the conditional 
distribution of bx, given (3x is nondegenerate. 

(C.5) For any real number d, the support of the random variable y - d(3x is an  
interval (could be infinite) with length larger than the length of the 
interval of the minimizers for p(.). 

Then, the minimizer for (2.10) is unique and satisfies (2.11). 

PROOF. Suppose (a ,  b) is a minimizer of (2.10) such that b is not propor-
tional to (3. Then the inequality in the proof of Theorem 2.1 is an identity. By 
(C.4) and convexity, with probability 1, p is a straight line in some neighborhood 
of y - ( a  + c) - d(3x. Since the support of y - ( a  + c) - d(3x is an interval we 
see that p is a straight line on this interval. On the other hand, by convexity the 
set of minimizers of p is also an interval, but with smaller length due to (C.5). 
Therefore these two intervals must be disjoint; p is a straight line on each 
interval. This is contradictory to the assumption that ( a ,  b) is a minimizer 
because we can always shift (a ,  b) to some (a', b) so that the resulting interval 
for the support of y - ( a '  + c) - d(3x is closer to the set of the minimizers for 
p(*)and hence reduces the R(a,  b). Therefore we have shown that any mini-
mizer should be of the form (a ,  cp). Now suppose there is more than one 
solution. Since the solution set must be convex, we can choose a solution not in 
the boundary, say (a ,  cp) again, and conclude that p must be a straight line on 
the support of y - a - cpx. The rest of the proof is straightforward and is 
omitted. 

REMARK4.1. If (C.4) is replaced by the stronger condition that 

(C.4') for any b not proportional to (3, the conditional distribution of bx given 
,Bx does not have a finite essential maximum or minimum, 

then without (C.5) we can still prove that any minimizers for (2.10) are propor-
tional to (3. 

REMARK4.2. The following example shows that when both (C.4') and (C.5) 
are violated, we may find some solution of (2.10) that does not fall on the 
correction direction. Take 

0, for 1191 5 1, 
P(') = [1191 - 1, otherwise, 
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(x,, x,) - uniform on the unit ball x; + x; I 1and y = x,. Thus we may take 
a = 0 and j3 = (1,O). But a = 0, b = (0,l) is also a solution of (2.10) since 
R(a ,  b) = 0 for this choice of (a ,  b). But if x, - uniform on ( -1 , l )  and 
x, - N(0, I), x,, x, independent, then although there is more than one solution 
for (2.10), they all fall on the direction of P. 

5. Sampling properties. In this section we study the asymptotic properties 
of the maximum likelihood-type estimate$ (2 , B) based on the sample minimiza- 
tion problem (2.2). First we establish the strong consistency and asymptotic 
normality of (&, B). We then discuss how link violation affects the asymptotic 
covariance matrix. The results are applied to inference problems in Section 5.4. 

5.1. Strong consistency. Fisher consistency usually implies strong consis- 
tency under suitable regularity conditions. A typical case is the maximum 
likelihood estimate for parametric models [see, e.g., Cram& (1946), Lehmann 
(1983) and Le Cam (1953)l. The results in Huber (1967), with applications to the 
robust estimation problems, might also be applicable in our case here [see, also, 
White (1981)l. However, instead of verifying or modifying Huber's conditions, it 
is easier to derive our results directly. 

THEOREM5.1. Assume that (A.l) and the following additional conditions 
hold: 

(D.l) The minimization problem (2.10) has a unique solution (a*, P*). 
(D.2) (a*, P*) is an  interiorpoint of a. 

Then the set of estimates (&, B) which solves the sample minimization prob- 
lem (2.2) converges almost surely to (a*, P*). 

PROOF. Since R(a,  b) and L (a  + bx, y) are convex in (a ,  b), they are 
continuous in a neighborhood of (a*, P*). Let B be a closed hypercube contained 
in a with center (a*, p*) and width 2y > 0 on each side. Denote the sup-norm of 
a continuous function on B by 1 1 ,.1 1. 
 Using Mourier's (1953) theorem for the 
strong law of large numbers in Banach space, we have 

provided that 

(5.2) E I I  ~ ( a  - L(a* + P*x, Y) < a.+ bx, y) 

The verification of (5.2) is given in the Appendix. 
I t  follows from (5.1) that .the set Snof (a ,  b) that minimizes 

n 


n-' C L ( a  + bx,, y,) 
i-1 

over B must converge to (a*, p*) almost surely. Since (a*, P*) is an interior point 
of B, this means that with probability arbitrarily close to 1,the set Snis in the 
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interior of B for sufficiently large n. Thus each point of Snis a local minimizer; 
hence i t  is also a global minimizer due to the convexity condition (A.l). Again 
because of convexity, no other points outside B can be a global minimizer. This 
shows that the set of (6, b)  defined in this theorem converges to (a*,P*) almost 
surely. 

This theorem can be applied to the GLM and the M-estimates, yielding the 
following results. 

THEOREM5.2. Assume thut (y, x) follows the general regression model (1.1) 
and  (2.9). The GLM estimate fl based on the NEF criterion (2.4) with the 
natural parameter space O = R, is strongly consistent for P up to a multiplica-
tive scalar, under conditions (A.2), (B.l) and (B.2). 

THEOREM5.3. Assume thut (y, x) follows model (1.1) and (2.9). The M-
estimate fl, based on the location-invariant criterion (2.6), is strongly consistent 
for p up to a multiplicative scalar, under conditions (A.2) and (C.l)-(C.5). 

REMARK5.1. Theorem 5.2 still holds for the case that O is restricted, 
provided that (a* ,P*) is in the interior of Q. This would be true, e.g., if px  has a 
positive probability mass a t  both of its essential bounds. 

5.2. Asymptotic normality. We assume that L(. ,  y)  is smooth enough to 
allow the usual Taylor expansion derivation for asymptotic normality. Take 

s,(a, b) = the ( p  + 1) column vector of all partial derivatives of ln(a ,  b),  

in(a ,  b) = the (p + 1) X (p + 1) matrix of second order partial deriva-
tives of &(a, b). 

Clearly 

and 

where L,(., .) is the partial derivative dL(6, y)/de, L,,(., .) is d2L(e,~ ) / d e ~  
and Mi is M with x replaced by xi. 
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We expand sn(a, b) as 

sn (a ,  b) = sn(a*,P*) 

+ [[in(,* + h(a  - a*), P* + h(b - P*)) dX I(a  - a*, b - P*)'. 

Since sn(2, b) = 0, we see that 

- n-1/2sn(a*, P*) = [~u'n-'in(&+ A ( &  - a*), p* + h(B - P*)) d h ]
(5.2.I) 

x n1/2(2 - a*, fi - P*)'. 
By the central limit theorem, 

n-'/'sn(aY, P*) + N(0, C) ,  ' 
where 

(5.2.2) C = EL1("* + P*x, Y ) ~ M .  


On the other hand, the term inside the square brackets in (5.2.1) converges to 


(5.2.3) A = EL,,(a* + P*x, y)M. 


Therefore, we have 


(5.2.4) &(&- a*, b - p*) + N(0, A-'CAP'). 

The result (5.2.4) can be made rigorous under conditions (A.l), (D.l), (D.2) and 
the conditions: 

(E.l) Ll,(8, y)  exists and is continuous in 0 with probability 1. 
(E.2) EIIL,,(a 	 + bx)llB < oo and EIIL,,(a + bx, y)llB llx112 < cc for some 

closed hypercube B in &? with center (a*, P*). 

Details are omitted. 

5.3. Asymptotic covariance. The asymptotic covariance matrix for takes a 
much simpler form under the assumption: 

(A.2 "') The regressor variable x has an elliptically symmetric distribution with 
mean ,U and a nonsingular covariance matrix. V. 

THEOREM Assume (5.2.4) holds. Then under (A.2"'), the asymptotic 5.3.1. 
covariance for fi ( i .e . , thep x p submatrix obtained by deleting the first row and 
column vectors from A-'CAP') has the form 

(5.3.I) AvV-l + kP*'P*, 

where A, 77, k are scalars such that 
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I n  addition, if x is normally distributed, then 

(5.3.6) q = l/ELll(a* + P*x, y) .  

The proof of this theorem is based on the following lemma, 

LEMMA5.1. Under (A.2 "'), for any real-valued function 4 ,  we have 

E4(Px)(x  - Y ) '  = c,PV, 

E$(Px)(x - Y)(x - Y)' = c,V+ c,VP'PV, 
where c,, c,, c, are scalars. 

The proofs for Lemma 5.1 and Theorem 5.3.1 are given in the Appendix. In 
the following sections, we discuss the implication of this theorem. 

5.3.1. Maximum likelihood estimate. I t  is well known that for a regular 
parametric setting, the asymptotic covariance matrix of the m.1.e. is the inverse 
of the Fisher information matrix, under the assumption that the parametric 
model is correct. But under link violation, the asymptotic covariance matrix 
takes the form (5.3.1). We now compare these two matrices to understand the 
effect of link violation on the asymptotic covariance. 

COROLLARY5.3.1. Suppose the criterion function L(6, y) in (2.3) is indeed 
the negative of the log-likelihood function for the true model. The asymptotic 
covariance matrix for the m.1.e. B based on L has the form 

(5.3.7) qv-I + k'P*'P*, 

where q is given by (5.3.3) and k' is another scalar, under conditions (A.l), 
(A.2"') and the usual regularity conditions for asymptotic normality. 

PROOF. The Fisher information matrix for (a,  P) is A. Therefore the asymp-
totic covariance for (2 ,  B) is A-',  which takes the form of (5.3.7); see the proof of 
Theorem 5.3.1 in the Appendix. 

Now comparing (5.3.1) and (5.3.7), we have the following important theorem, 
which is useful for making inference about P. 

THEOREM5.3.2. Under (A.l), (A.2"') and the regularity conditions for 
asymptotic normality, the asymptotic covariance matrix of PW is changed under 
link violation only by the multiplicative scalar X for any matrix W such that 
pw= 0. 

For GLM estimates with O = R, we have 

L1(a* + p*x, y )  = -y + $'(a* + P*x) = -Y( y, x) 
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and 


LJa* + p*x, y )  = $I1(a*+ p*x) = a2(x),  


where y( y, x) and a2(x) are the residual and variance operators for the specified 
GLM. Thus if x is normal, then the rescaling factor is simply 

the ratio of true residual variance E y 2( y, x) to the model-based average variance 
Eu2(x). [Note that Ey(y,x) = 0, as can be seen from the likelihood equation 
(3.3.4).] 

For the least squares estimate, we have 4" = 1; thus the rescaling factor is 
reduced to E y 2( y, x). Strictly speaking, (2.5) misspecifies the variance as exactly 
1; therefore the covariance matrix A- '  based on the error distribution E - N(0,l) 
needs to be rescaled by the residual variance E y 2( Y, x). When the linear model 
y = x p  + E holds, we have Ey2(y,  x) = E t 2  as usual. 

5.3.2. Location-invariant criterion. When the location-invariant criterion 
(2.6) is used, i t  is well-known in robust regression that the asymptotic covariance 
matrix for is given by 

provided that  the linear model 

(5.3.9) y = a + p x + & ,  E - F ( E ) ,  

holds [see, e.g., Huber (1981), Chapter 71. In other words distribution violation 
changes the asymptotic covariance matrix by the multiplicative scalar 

[If -p is indeed the log-likelihood function for the true model, the asymptotic 
covariance matrix would be V-'/EpU( y - a - px).] 

If we allow for link violation, so that the linear model assumption (5.3.9) 
might be false, the asymptotic covariance matrix should be given by (5.3.1). Since 
now we have 

L1(a*+ P*x, Y )  = p'(y - a* - P*x) 

and 
Lll(a* + P*x, y)  = p"(y - a* - P*x), 

i t  follows that  the first term in (5.3.1) is the same as (5.3.8) (with a,  P replaced by 
a*, p*) if x is normally distributed. 

COROLLARY5.3.2. If x is normally distributed, the asymptotic covariance 
matrix for BW based on (5.3.8) for robust regression is robust in validity against 
link violation for any matrix W such that PW = 0. 
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5.4. Statistical inference. In this section, we discuss how to modify standard 
parametric inference methods to accommodate possible link violations. In view 
of Observation 1, only the scale-invariant inference problems are of interest to 
us. For hypothesis testing problems, we consider scale-invariant null hypotheses 
of the form H,: f3W = 0. We consider Wald's test and the likelihood ratio test. 
We also invert Wald's test to construct confidence regions. We assume (A.2"') 
throughout this section. 

5.4.1. Wald's test. Consider the hypothesis testing problem with H,: PW = 

0 against HI: pW # 0, where W is a p x r matrix with rank r Ip. Under link 
violation, converges to p*, which is proportional to P. Hence under H,,, we 
have p*W = 0. In view of Theorem 5.3.2, this implies that ~ I ) wconverges to 
N(0, AU), where 

(5.4.1) U = (0 W)A-'(0 W')' 

can be estimated consistently by 0, replacing A with a method of moments 
estimate A.Therefore if we divide the usual Wald test statistic 

by a consistent estimate A of A ,  then we would have the valid null distribution 
for the test statistic. Under (A.2 " I ) ,  we can use the method of moment esti- 
mate for X based on (5.3.2). Under (A.2'), we can use the method of moment 
estimate for A based on (5.3.5). In either case, the rescaled Wald test 

(5.4.3) accept H, if X2/F( < x:(1 - a)  

is robust in validity against link violation. 
For the GLM estimate, the rescaling in (5.4.3) can be used to protect against 

the misspecification of both the link function and the variance function. McCul- 
lagh (1983) used the generalized X2, 

to adjust for the dispersion parameter when the NEF log-likelihood function is 
correct only up to a multiplicative scalar. Note that the generalized X 2  is 
analogous to the rescaling factor A; for the NEF criterion, we have 

if x has a normal distributions (A can be interpreted as a ratio estimate, while A' 
can be interpreted as a regression estimate). Therefore a minor modification of 
the generalized X2 gives link robustness under the normality assumption (A.2'). 
If. we have (A.2"') instead of (A.2'), a different rescaling factor based on (5.3.2) 
would be required. 

For the M-estimate, (5.4.3) can be used as a link-robust test. Huber (1981) 
suggested a distribution-robust test based on (5.3.8), which coincides with (5.4.3) 



1035 REGRESSION UNDER LINK VIOLATION 

if we estimate X and 77 using (5.3.5) and (5.3.6). Under the linear model (5.3.9), 
Huber's result does not depend on the normality assumption (A.2'). But if (A.2') 
does hold, then the test is also robust under link violation. If we have (A.2"') 
instead of (A.27, the test has to be modified by a multiplicative scalar [i.e., using 
(5.3.2) and (5.3.3)] in order to be link robust. 

REMARK5.2. Motivated by the usual ANOVA for the linear model, we may 
consider the use of F-test instead of x2-test in (5.4.3) by replacing x;(1 - a)  by 
r Fr,n - p - 1(1 - a). 

5.4.2. Confidence region. We may invert the Wald test to construct confi- 
dence regions for p. Due to identifiability (Observation I), we consider only 
cone-shaped confidence sets. 

For any nonzero vector v, consider testing Hv: p CK v. The (1 - a)  x 100% 
confidence region for P can be constructed by finding the set of v such that Hvis 
accepted at  a level. This can be viewed as the Scheffb method for constructing 
confidence sets for the direction of P. We now derive a simple expression for 
these confidence sets. 

For any vector e with unitary length, let ?r, be any p X ( p  - 1) matrix such 
that r;re = Ip-,and e% = 0. Consider the testing problem He: PV1/2.1r, = 0. 
This is equivalent to testing whether P is proportional to V-l/'e. Therefore the 
(1 - a)  x 100% confidence set for P based on inverting Wald's test is the cone 
spanned by 

( e ~ - l / ~ :  I xb-,(l a ) ) ,lei = 1and nX-1fi-1B~1/2rer;~1/2B' -

because the U in (5.4.1) with W = V1/271, equals 7-I times the identity matrix 
under He. Since reis a projection, we see that 

{ e ~ - l / ~ :llell = 1and nfi-lfi-l(eVgf - 5 Xi - l ( l  -( e ~ l / ~ B ' ) ~ )  a)) .  

Replace V by and rearrange the inequality. Then we have the following 
(1 - a)  x 100% confidence region for P: 

In terms of the geometry based on the inner produce (v, w) = v ~ w ' ,  the 
confidence set given by (5.4.41 can be interpreted as the cone consisting of the 
vectors having an angle with P of no more than 

Note that when (6fi)-lIPBf is small, the confidence set might be the entire RP. 
The same technique can also be applied to construct confidence intervals for 

ratios Pj/Pk, based on inverting the Wald tests for H,: cPk - Pj = 0. Tukey type 
confidence sets for (P2/P1,. . . , Pp/P1) can also be obtained. 

5.4.3. Likelihood ratio test. In addition to the Wald test given in Section 
5.4.1, we may also consider the likelihood ratio test based on twice the difference 

http:PV1/2.1r
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between the maximized criteria under HI and H,, where H, and H, are 
scale-invariant hypotheses with H, c HI. For simplicity, we assume that HI is 
the unrestricted hypothesis HI: P E RP. Suppose H,: P = vA for some v E Rh, 
where A is an h x p matrix with rank h, h < p. 

The likelihood ratio test is then based on 

where (ti,+) denotes the estimate for (a ,v )  by minimizing n-lC:=lL(a + 
vAx,, y,) over a E R and v E Rh. The following theorem shows that Q can be 
rescaled to give the asymptotic X 2  test under link violation. 

THEOREM 5.4.1. Under link violation, the rescaled likelihood ratio Q/A 
converges to the X 2  distribution with p - h degrees of freedom under H,, 
provided that the conditions (A.l), (A.2 "'), (D.l), (D.2), (E.l) and (E.2) hold. 

The proof is given in the Appendix. 

REMARK 5.3. We may use F with p - h, n -p - 1 degrees of freedom 
instead of x;-, to determine the significance level. 

6. Design condition. The most restrictive assumption we have made in this 
paper is the design condition (A.2). When (A.2) is violated, the consistency result 
may be invalid. This raises at  least three important issues: 

1. How serious is the inconsistency if (A.2) is only slightly violated? 
2. How to empirically "verify" (A.2) to the extent that the resulting bias would 

not be serious? 
3. How to reduce the bias when it is necessary? 

These issues are discussed in Sections 6.1-6.3. Generally speaking, the vulner- 
ability to link violation increases as the design distribution departs further away 
from elliptic symmetry. To help the illustration of this phenomenon, a global 
measure of elliptic asymmetry (EASY) based on a crucial concept, the ICE 
curve, is introduced. A practical implication from our discussion is that when 
conducting a regression analysis, it is worthwhile to take a closer look at  the 
distribution of the explanatory variable to make sure it does not bluntly deviate 
from elliptic symmetry (cf. Remark 6.4). This aspect of design robustness may 
have escaped most statisticians' attention. Our point is further illustrated by a 
simulation study which is reported in Section 6.4. 

6.1. Seriousness of inconsistency. We denote any distribution satisfying 
.(A.2) by Q,. To emphasize the dependence of the minimizer of (2.10) on Q, the 
distribution of x, we shall write P*(Q) and a*(&) for P* and a*, respectively. We 
assume the condition (D.1) in Section 5 for simplicity. Theorem 2.1 implies 
P*(Qo> P. 
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The issue of inconsistency is discussed in two phases: (i) Examine the continu-
ity property of the function P*(.)a t  the point Q, and (ii) bound the bias with a 
measure of elliptic asymmetry for Q. 

6.1.1. Continuity. To simplify the discussion, we shall concentrate on the 
class of Q's with support in a bounded Bore1 set B in RP. The case of 
unbounded support will be briefly discussed a t  the end. 

Assume the general regression model (2.8). Define the bivariate function 
P(8,,8,) = EL(B1,g(8,, E ) )  and let O c R2 be the domain of this function. 
Observe that E Q P ( a+ bx, a + Px) = R(a,  b). Assume the regularity condition 

(6.1.1) 2 ( 8 , ,  8,) is continuous in O. 

THEOREM6.1. Under conditions (A.l), (6.1.1) and (D.2) in Theorem 5.1 for 
Qo, /3*(.) is weakly continuous a t  Qo with respect to the class of distributions 
with support in B. 

PROOF. Due to (D.2), i t  is possible to take a small open ball B, in RP+' with 
center (a*(&,), P*(QO))such that the closure O, of the set {(a + bx, a + Px): 
( a ,  b) E B, and x E support of Q,) is in O. By convexity of P(8, ,  8,) in el, i t  
suffices to show that for any sequence Q, that converges weakly to Q,, 

(6.1.2) sup I E Q n 2 ( a+ bx, a + fix) - E Q o 2 ( a+ bx, a + fix) ( -+ 0 .  
(a,b ) E &  

Now suppose (6.1.2) is false. We may find a subsequence (a,, b,) converging to 
some point, say (a,, b,) such that 

(6.1.3) 
IEQn2(an+ bnx, 01 + Px) - EQo2(un + bnx, a + Px) 1 

does not converge to 0. 

Since Q, converges to Qo weakly, by Slutsky's theorem the joint distribution of 
(a,  + bnx, a + fix) under Q, converges to the distribution of (a, + box, a + px) 
under Q,. But P is continuous and bounded in (3,; a contradiction to (6.1.3) is 
obtained, proving the theorem. 

REMARK6.1. For the case of unbounded support, the weak continuity result 
no longer holds. In order to have (6.1.2), we need some uniform integrability 
condition. In practical terms, one has to be more cautious when some design 
points are remote from the center. 

6.1.2. Bias bound. In this section, a bound for the bias will be derived from 
the likelihood equation. We shall assume (D.l), (D.2) and that the function 
L( .  ,y) is smooth enough to allow the usual Taylor expansion. Thus we require 
that  

9 ( 8 , ,  8,) is twice differentiable in 8, for each 8,. 

Let $P, and % be the first and the second derivatives of 2with respect to 8,. 
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The likelihood equation 

E Q P 1 ( a+ b x ,  + P x ) ( ~  x') = 0 

has a solution a t  (a*(&),P*(Q)),to be abbreviated as ( a $ ,Pg*)  Taylor expan-
sion a t  (a*(&,), P*(Q,)), abbreviated as (a,*,PO*), leads to 

E Q L ? l ( a , * + P R ~ , a + P ~ ) ( lx') 

where iQ(a ,b) is defined to be E Q P l l ( a+ bx,  a + Px)M and M is defined in 
Section 5.2. 

The convexity of L(. ,  y)  implies that $P,, is nonnegative. If we further 
assume that 

(6.1.5) Pll2 C ,  for some positive constant c,, 

then the matrix inside the brackets in (6.1.4) is bounded away from 0 by coEQM. 
Therefore a bound for the Euclidean norm of the bias is 

When the minimum eigenvalue of the design matrix EQM, denoted by A,,(&), 
is bounded away from 0, the most crucial factor in this bound is the length of the 
vector EQz1(a,*+ P;X, a + Px) ( l  x'). The next lemma helps interpret this 
vector. We need the notation 

Q p ( .) = the cumulative distribution of fix under Q ,  

LEMMA6.1. The following identity holds: 

EQPl(a,* + P X X ,  + P x ) ( ~  x') 

PROOF.Observe that P$ is proportional to /3 and that the left side of the 
identity equals 0 for Q = Q,. The rest of the proof is trivial. 

How does the departure of Q from Q, affect the bias bound? Lemma 6.1 
together with (6.1.6) provides a clear picture. The integrand on the right side of 
the equality in Lemma 6.1 is seen to be fixed. Thus the main factor for the bias 
bound comes from two functions: (i) Qp( . )- Qop(.)and (ii) HQ,p(.)- HQ,,,!('). 
The first function is just the difference in the marginal cumulative distributions 
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along the true direction P. To interpret the second function, consider the curve 
of the conditional mean EQ(xlPx= t )  denoted as [( t ;P, Q). Express HQ,p(t)as 
l"[(tf; P, Q) dQp(t1).Thus the second term is the difference between the two 
integrated conditional expectation curves (ICE curves, for short) of x along the 
direction p. 

Suppose we measure the size of the two functions discussed above by the 
supremum norm. We further take the supremum over any direction P. This leads 
to two metrics: (i) d(Q, Q,) = sup,, .,p, RplQp(t)- Qop(t>land (ii) J(Q, Q,) = 

sup,, .,,R P I I  HQ,p(t) - HQo,p(t)ll. The first one, called the half space metric, is 
popular in the study of the Vapnik and Cervonenkis type problems and has been 
considered in the robust and nonparametric statistics. The second metric is only 
defined for those distributions with finite means and may be called the half space 
linear metric to emphasize the linear term x in the integrand of the definition of 
Hs, p(.1. 

For the case that Q, has bounded support, using integration by part for the 
right side of the identity in Lemma 6.1, we see that the bias bound is a t  most of 
the same magnitude as d(Q, Q,) + J(Q, Q,). 

THEOREM6.2. Assume (6.1.1) and (D.2) for Q, and that 

(6.1.7) .Yll and .Y12 is continuous in 0 ,  

where 912is the derivative of $P, with respect to the second argument. Then for 
a n  elliptically symmetric Q, with bounded support, we have IIP$ - P:ll = 

O(d(Q, Qo) + J(Q, Qo)) as d(Q, Qo) + J(Q, Qo) converges to 0. 

PROOF. By Theorem 6.1, for any sequence Q, such that d(Q,, Q,) + 
d"(~ , ,Q,) converges to 0, a;, and PQ*, converge to a,* and P,* The matrix inside 
the brackets of the Taylor expansion (6.1.4) converges to EQo211(a$+ P:x, 
a + Px)M, the Hessian matrix, which is positive definite. The rest of the 
argument is trivial. 

6.2. Empiric view of the bias bound. For a given data set, the empiric 
distribution of x, denoted by Q,, is available. If we may find an elliptically 
symmetric distribution Q, with bounded support such that d ( ~ , ,Q,) and 
J(Q,,Q,) are small (say, of order n-1/2), then by heo or em 6.2 we see that the 
bias bound is also small (of order a t  most n-1/2). Note that when Q, is 
generated from Q,, both the half space distance and the half space linear 
distance between Q, and Q, are OT(n-l"). Thus if we conduct a significance 
test for Q = Q, based on these distances, then the acceptance of the null 
hypothesis leads to a bias /3*(Q,) - P,* of order no greater than n-1/2. 

REMARK6.2. Brillinger (1982) discussed the difference between the condi-
tional inference (conditional on the observed xi's) and the unconditional infer-
ence for the least squares estimation. In order to obtain a bias bound of order 
smaller than n-1/2, he considered the case that x i  are generated from a 
deterministic quasi-Gaussian sequence, based on Halton (1960). Adopting the 
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same idea, we may show that x i  can be carefully designed so that d ( ~ , ,  Q,) + 
J(&, Q,) is of order nP1(log n)P, for any nondegenerate elliptically symmetric 
distribution Q with bounded support. For such design sequences, the bias is 
negligible compared with the variance (note that the conditional variance is 
typically smaller than the unconditional variance and can be calculated in a way 
similar to Section 5 before). Theoretically, we have some reservations for using 
Q, with an unbounded support (including the normal one), which seems to 
create a problem for obtaining the identity (4.10) in Brillinger (1982). However, 
this may not be a problem in practice. 

6.3. Measuring elliptic asymmetry and bias reduction. We shall introduce a 
measure of elliptic asymmetry, called EASY, for Q,, which indicates how 
vulnerable Q, may be to link violation. Bias reduction will be based on subsam- 
pling, using EASY as a criterion. 

Throughout this section, we assumed that xi's are normalized so that Q, has 
mean 0 and covariance I. 

To begin with, recall from the discussion in Section 6.1.2 that the major 
factors for the bias bound are Qn8 - QoB and Hp,b- HQ0,/Since Q, is arbi- 
trary as long as i t  satisfies (A.2), we may choose Q, to minimize the effect of 
these factors, hoping that i t  may lead to a sharper bias bound. 

We shall consider only those Q,'s that have the same marginal cumulative 
distributions as Q, along the direction P. This restriction exterminates the first 
factor. Furthermore, to eliminate the boundary effect (due to integration by 
part), we require Q, to have the same mean as Q,, implying that HQo,bm) = 

HQn,Jm)= 0. Let gnPBbe the class of all Q,'s satisfying these constraints and 
the condition [implied by (A.2)] that E(xlPx) a P. From %?n,8, we shall choose a 
Q, to minimize the supremum norm of the difference between ICE curves HQn,) 
and  HQo,@up to a constant vector (note that the derivative of a constant is 0). 

Denote the projection of a vector u onto the orthogonal complement of a 
unitary vector e by v,, i.e., u, = v - (0, e)e. Then we have 

(6.3.1) inf i n f p l ~ H ~ n , , - H Q o , p - ~ l l M =inf ll(HQn,,(.)- v)B/l,.
Q , , E % , ~o E R  U C R P  

Geometrically, the right side of (6.3.1) is the minimum of the radii of the 
cylinders with axes parallel to P that are circumscribed outside the empirical 
ICE curve. This quantity provides a measure of straightness for the empirical 
ICE curve. 

Now since /3 is unknown, conservatively we take the supremum over f l  to get 
the measure of elliptic asymmetry EASY: 

'The domain of EASY can be extended to any Q. I t  is not hard to see that 
EASY(&) = 0 if and only if Q is elliptically symmetric in R* or its linear 
subspaces (including straight lines). The larger the value EASY(Q,) is, the more 
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serious the bias in estimating the direction of f i  under link violation may be. 
Thus EASY may be viewed as a design diagnosis criterion which serves the 
purpose of alerting us against the possible ill effects due to the link violation. 

When EASY(Q,) is large, we know that our design is vulnerable to link 
violation. Thus we should be more concerned about model checking or model 
searching to ensure that our final regression model is highly accurate (but 
unfortunately the effectiveness of such efforts may be limited). In addition to 
this, we may search for subsamples (or more generally, distributions Q, with 
supports contained in the support of Q,) that have lower EASY and run the 
regression analysis on these subsamples [for instance, to get a point estimate we 
may minimize EQnL(a + bx, y)], hoping for the results to be reliable. Moreover, 
different estimates obtained from different subsamples can either be combined to 
increase efficiency or be compared to check if the one component model assump- 
tion is violated or not. Further works need to be done in'order to offer a practical 
guidance on this last aspect. 

REMARK6.3. A less conservative measure of the vulnerability to link viola- 
tion is simply to estimate the quantity in (6.3.1) by plugging in /3 = ,d. 

REMARK6.4. All discussions in this section deal with the "worst" case 
situation. However, empirical study by Brillinger and others suggests that quite 
often the bias may be negligible even for a moderate violation of the design 
condition. 

6.4. A simulation study. As an illustration of the impact of elliptical asym- 
metry on the regression estimates, we have conducted the following simulation 
study. We take the regressor to be bivariate, which we denote as x = (x,, x,)'. 
We take the design points to be distributed evenly over the square -0.5 I x, I 
0.5, -0.5 I x, I 0.5: 

We take the true model to be 

where f i  = (cos 0, sin 6) and k( .) is antisymmetric, continuous and piecewise 
linear: 

This design satisfies condition (A.2) only for 0 = 0, m/4, n/2 and 3n/4, i.e., 
f i  fi, 1/ a ) ,  (0,l) and (1/ a ,  -1/ fi). For our illustration, we (1,' (1, O), = 
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TABLE1 
Distribution of 8 and 6 

Standard Quantiles 

Mean deviation 0.05 0.10 0.25 0.50 0.75 0.90 0.95 

take 8 = 0.416, i.e., P = (0.915,0.404), for which the symmetry condition (A.2) is 
violated. We take m = 20 and a = 0.025. 

Under the given assumptions, the least squares estimate 6 is normally dis- 
tributed with expectation 

p* = E(B)  = (0.0477, -0.0138) 

and a diagonal covariance matrix 

The direction of E(B) differs from that of j3 by 0.697 rad ( - 40"). The first 
row of Table 1 summarizes the distribution of the direction of ,d, i.e., 8 = 

tan-l(B2/B1), which is estimated from 10,000 draws from the bivariate normal 
distribution for PI, using the RANNOR function in SAS. The estimated direction 
is practically always in the fourth quadrant, which is a t  least 0.416 rad away 
from p. 

To reduce the bias, consider the following subsampling procedure: Ignore the 
design points in the four comers of the square and apply the linear regression to 
the subdesign {X: x;  + xi I 0.25). The subdesign is very close to being spheri- 
cally symmetric. The least squares estimate p based on this subdesign is 
normally distributed with expectation 

and a diagonal covariance matrix 

cov(6)  = F21, F = 0.00593. 

The direction of the expectation P** is 0.420 rad, which is, as expected, almost 
identical to that of the true direction 8; the two are different by less than 0.004 
rad. 

The second row of Table 1 summarizes the distribution of the estimated 
direction 8" = tan-'(&/&) based on this subdesign. There is a probability of 
about 0.9 for the estimated direction to be within 0.1 rad ( - 6") from the true 
direction 6 = 0.416 rad. Furthermore, the estimated direction is practically 
always in the first quadrant, which is a t  least 0.282 rad away from of P*, the 
expected estimated direction based on the complete design. 

Despite the substantial bias of the full design estimate PI, it is not easy to 
detect the model violation by most standard diagnostic tools. As an illustration, 
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TABLE2 
Linear regression, R2 = 0.1036 

Variable d.f. B t 

Intercept 
X1 

X 2  

Mean 

Source Square 

Model 

Error 


we generate a data set according to the above specifications, using the RANNOR 
function in SAS to generate the E'S. Table 2 summarizes the linear regression of 
y on x, and x,. The estimated direction 8 = -0.178 differs from the true 
direction by 0.594 rad ( - 34"). We carried out some standard diagnostic tech- 
niques but failed to detect the model violation. For instance, the linear regression 
of y on x,, x,, x:, x i  and x,x, shows none of the three quadratic terms is 
significant a t  the nominal 5% level; the combined F-test has a nominal P-value 
of 0.985. The more parsimonious test, Tukey7s 1 degree-of-freedom test, has a 
nominal one-sided P-value of 0.432. Figure 1is the usual residual plot (residual 
versus prediction scatter diagram) for regressing y on x,, x,. There does not 
appear to be any interesting patterns in the plot. If we treat the residuals as 
being independent, we can partition the residuals by the ranks of the predicted 
values, then use a one-way ANOVA to test for the presence of patterns. Using 20 
partitions with 20 observations in each, the test has a nominal P-value of 0.943. 
All of these residual-based diagnostic tools suggest that the fitted least squares 
model is satisfactory (cf. Remark 6.5 below). 

On the other hand, Table 3 summarizes the least squares regression of y on x, 
and x,, restricted to the subdesign, for the same data set. The estimated 
direction, 8" = 0.502 rad, different from the true direction by only 0.086 rad 
( - 5O), is dramatically different from the original estimate 8. Thus the consider- 
ation of elliptical symmetry of the design distribution adds a new dimension to 
regression diagnostics. This new viewpoint is rather different from the more 
popular one based on the concept of the leverage point; the latter is a local 
sensitivity analysis, while the former is a global violation analysis. 

REMARK6.5. I t  might be possible to detect model violation in this example 
by examining the residuals more thoroughly. For example, if we plot the 
residuals against a number of possible linear combinations of x, and x,, rather 
than just the fitted combination bx, it is possible to detect nonlinear patterns 
from those residual plots against the linear combinations near px. However, such 
procedures might lead to spurious patterns [cf. Huber (1985), Section 211 and 
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Figure 1 Residual 
Plot 

prediction 

FIG. 1. Residualplot. 

TABLE3 

Linear regression for subdesign, R2 = 0.2664 


Variable df. B t 

Intercept 
Xl 

x2 

Source df. 
Mean 

Square 

Model 
Error 

2 
281 

0.0835 
0.0016 

51.01 

might not be easy to apply when the dimensionality of x is higher. Other 
possibilities include nonparametric regression techniques such as kernel esti- 
mates, thin plate spline, partial spline [Engle, Granger, Rice and Weiss (1986) 
and Wahba (1984)l and projection pursuit regression [Friedman and Stuetzle 
(1981)l. Eubank (1988) provides a nice account on nonparametric regression. 

REMARK6.6. For the full design, we have a probability of Q(4.20) = 1.000 to 
reject the hypothesis that the slope vector /3 is proportional to (0.915,0.404), the 
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true direction, using a standard two-sided 5% level test. Therefore the full design 
almost certainly misleads us to the false conclusion that ,8 is significantly 
different from (0.915,0.404). On the other hand, if the regression analysis is 
restricted to the subdesign, the probability of rejecting this hypothesis is only 
0.0014. The test based on the subdesign also has a probability of (P(7.57) = 1.000 
to reject the false hypothesis that the slope vector is proportional to ,8*. 

7. Adaptive estimation. The discussion so far has been from the viewpoint 
of robustness, so the criterion function used for regression is already given. We 
may also ask the question of how to obtain an efficient estimate of ,8 (up to a 
multiplicative scalar) under the general regression model (2.8) with g,  F being 
unknown. I t  turns out that under the elliptical syrnnietry condition for x, 
(A.2 " I ) ?  we may estimate P (up to a proportionality scalar) as well as if g and F 
are known. In other words, adaptive estimation is possible here. 

The main tool we shall use here is the device given by Bickel (1982), a paper 
which the reader is expected to be familiar with in order to follow the discussion 
below. 

Bickel (1982) discovered that for many semiparametric problems (i.e., those 
with both parametric and nonparametric components), there is a convexity 
structure for the nonparametric component. Utilizing convexity, he simplifed 
Stein's necessary condition for adaptive estimation. In the following we shall 
demonstrate that the convexity condition and the simplified Stein necessary 
condition [called the generalized S* condition in Bickel (1982)l hold. We also 
briefly discuss how to obtain an adaptive estimate without giving the regularity 
conditions and the proofs. The distribution of x will be assumed known in our 
discussion although for constructing an adaptive estimate it may be unknown as 
well. 

7.1. Convexity. The convexity condition in Bickel (1982) amounts to the 
following: For each fixed (a, P), the set of distributions 

{distribution of (y, x) : (1.l)  holds, g ,  F arbitrary) 

is a convex set in the sense that any mixture of two distributions in this set also 
belongs to this set. 

To see why this condition holds for our case, we need only to observe 
that under (1.1) the conditional distribution of y given x takes the form 
H(a  + px, y )  where H(t, .) is an arbitrary distribution function for each t. 

7.2. Generalized S*. Let l( y, x, a, P, h )  be the logarithm of the density for 
(y, x) when the conditional density of y given x is h(a + px, y). Clearly, the 
vector of partial derivatives of 1 with respect to a and P is 

where hl(t, y) = ah(t, y)/dt. Write the information matrix I = ~ i ' iand its 
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inverse in block form, 

I11 I 1 2  Ill 112 

I =  I I I - = 122). 

where Ill and I" are scalars. Suppose we are interested in estimating cp(P) 
where cp is any differentiable function (could be vector-valued) such that 
cp(cj3) = cp(P) for any scalar c. 

Now define y, x, a, P, h) = i( y, x,'a, P, h)I-'(0, +(P)), where +(P) denote 
the matrix of partial derivatives of cp. The generalized S*condition is 

(7.2.1) ~ , , i ( ~ , x ,  = 0, for any h ,  h*, a ,  P,  h )  

where the subscript of E indicates the true conditiopal distribution. 
The proof of (7.2.1) is given below. First using Lemma 5.1 we see that 

I,, a PV and I,, a V +  cVPfPV 

for some scalar c. Then using the identities 

and 

(7.2.3) Il1Il2 = 0+ 112122 

we see that 

cc V-l + c'p'p 

and 

(7.2.4) 122 

(7.2.5) 112 a p 
for some scalar c'. In addition, the homogeneous restriction of cp implies 

(7.2.6) P+(P) = 0. 

Finally using Lemma 5.1 again, we see that 

where * and c" are scalars. Putting together (7.2.4)-(7.2.7), we easily obtain 
(7.2.1) as desired. 

7.3. Adaptive estimation. A general recipe of constructing an adaptive esti- 
mator is given in Bickel (1982). To apply his method, all we need is to be able to 
find a consistent estimate of 4y, x, a, P), which is seen to be proportional to 

Thus, we have to estimate hf/h(t, y). In principle this is not hard, using 
techniques from the nonparametric density (and its partial derivative) estima- 
tion based on the data (&  + bx,, y,), i = 1,.. . ,n. Here we need to impose the 
identifiability constraint a* = a, P* = P, as was done in Bickel (1982). The 
details on the mode of consistency and regularity conditions as well as practical 



REGRESSION UNDER LINK VIOLATION 1047 

guidance for choosing the appropriate smoothing parameter involved in the 
density estimation will be examined more closely in the future. 

APPENDIX 

PROOFOF LEMMA2.2. For almost any (x, y), we can take a supporting 
hyperplane for the criterion function L at  an interior point (a*,  b*) in a. The 
hyperplane can be taken as 

H ( a ,  b; x ,  y )  = L ( a *  + b*x, Y )  + ( ( a  - a*)+ ( b  - b * ) x ) ~ , ( a *+ b*x, y) ,  

where L, is the right-side derivative of L with respect to 8. Take a closed cube 
B c centered at  (a*, b*). For any (a ,  b) in B, the*supportinghyperplane is 
bounded from above by L(a  + bx, y), therefore its expectation is either finite or 
- co. However, the case of - oo can be ruled out by considering the two points 
( a ,  b) E B and 2(a*, b*) - (a ,  b) E B together: If the expectation of the sup-
porting hyperplane is - oo at  one of the two points, then expectation at  the 
other will be + oo. Therefore EH(a, b; x, y) is finite for all (a ,  b) E B and hence 
for all ( a ,  b) E RP+'. This is a finite lower bound for all (a ,  b) E a,. The proof 
of this lemma is complete. 

PROOFOF LEMMA3.2. (i) Observe that Ey = EE Ag(a+ A, E)= h(A), where 
h(A) is defined by h(A) = EAg(cy+ A, E).Similarly, EyA = Eh(A)A. Thus Dl 
consists of those pairs (Eh(A), Eh(A)A) for some h such that h(A) > + I ( - a ) .  
We shall consider only the case that +(- oo) > - oo [the case +(- co) = - oo is 
trivial]. 

By the assumption EA = 0, we have 

Therefore (Eh(A), Eh(A)A) belongs to the set described in (i) of Theorem 3.2. 
On the other hand, for any point (7, {) in the set described in (i), we can find 

corresponding h by considering only those h which take the form h(A) = a + 
+(- a ) ,  +(- CO)or a, + +(- oo) depending on A 2 b,, b, < A < b, or A 5 b,, 
where a,, a,, b,, b, are constants with b, > {(TJ- +(- oo))-l > b,. This com-
pletes the proof of part (i). 

(ii) For a fixed c > 0, the largest a such that (a ,  c) E fi is a = -cB. Now 
since E+'(a + cA) is increasing in c, we have 

On the other hand, since E+'(c(A - B))is decreasing in c, we have for c > Z,, 

E+'(c(A - B)) < E+'(ETJ(A- B)) = TJ. 

Therefore E, is the largest c such that there exists some a to satisfy 

Now we need the following lemma. 
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LEMMAA. Subject to (A.l), E+'( a + cA)A is an  increasing function of c. 

The proof of this lemma is given later. Continuing the proof of part (ii), we see 
that by this lemma, the largest value of E+'(a + cA)A, subject to (A.l), is 
achieved a t  c = E,. Similarly, we can show that the lower bound is also as 
specified in (ii) of Theorem 3.2, completing this part of the proof. 

PROOFOF LEMMAA. First observe that due to the constraint (A.l), a is a 
function of c. Now taking the derivative with respect to c on both sides of (A.l), 
we get 

E+"(a + cA)(al + A) = 0, 

leading to 

a' = -E+"(a + cA)A/E+"(a + cA) 

On the other hand, 

2 0, 
where the last inequality is due to the Cauchy-Schwarz inequality. This com-
pletes the proof of Lemma A. 

PROOFOF (5.2). The proof is essentially the same as the proof for Lemma 
2.2, noting that over a closed cube, the convex function L (a  + bx, y) -
L(a* + P*x, y) assumes its sup at  one of the 2p+l vertices of B and the 
supporting hyperplane also assumes its inf at  one of the vertices. 

PROOFOF LEMMA5.1. First take P = V-'/,(X - p), 13 = pV1/2 and J(.) = 

J / ( .+ Pp).  I t  suffices to show that for some scalars c,, c,, c,, we have 

(A-2) E J ( B P ) ~ '  = c1B 
and 

(A.3) EJ(BP)S' = C,I + c3p1(?. 

Note that P is spherically symmetric with E f  = 0 and Var P = I. Let u be the 
projection of i' to the orthogonal complement of B. Clearly, given BP, u is 
spherically symmetric in the orthogonal complement of 13. Therefore, 

~B'gl = E B ~ ( ,  + 13%.  l l P l l - 2 .  B )  
= Bn . llPll-2 . B, 

proving (A.2) with c, = EJ(131) . B i  . ~ I B I I - ~ .Similarly, 
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and 

E%'U = c t ( r  - 11B11-2Bp), 

where c' = ~~'(11%1 1 2  - (B~)~11Bll-~)/(p- 1). Therefore (A.3) holds with 

REMARK.(A.2) can be proved directly from assumption (A.2), but (A.3) 
depends on the elliptic symmetry assumption (A.2 "'). , 

PROOFOF THEOREM5.3.1. Without loss of generality, assume that p = 0. 
Then by Lemma 5.1, we see that C and A take the block form 

where cl-c, are scalars, with c, = 11-1 and c2 = Xq-l [see (A.4)]. Now noticing 
that A takes the same form as the information matrix I in Section 7.2, we may 
use the same argument to find 

where c, = c;' = q. NOWthe result (5.3.1) follows immediately from matrix 
multiplication. 

To see that (5.3.5) holds, we simply observe that in the proof of Lemma 5.1, 
the scalar c' = 1under the normality assumption. 

PROOFOF THEOREM5.4.1. First, it  is clear that without loss of generality we 
may assume p = 0 and V = I. Similar to the usual parametric model case, we 
approximate Z,(a, b) locally by a quadratic function 

I,(a, c) = I ,  + ( a  - a*, b - P*)s, + +(a- a*, b - P*)i,(a - a*, b - P*)', 

where I,, s,, in are defined in Section 5.2 with the argument (a*,P * )  being 
omitted for simplicity. Now minimizing the right-hand side of this expression 
over ( a ,  b) E Rp+l and over (a ,  b) = (a,vA) for v E Rh, respectively, we see 
that 

Q 3 min I i;1/2s, - ik/2(a,V A ) ' ~ ~  
V E R ~ ,a E R  
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where Hn is the projection matrix from Rp+l to the orthogonal complement of 
the linear space {(n-1in)'/2(a,vA): a E R, v E Rh).Now asymptotically, i-1/2s, 
is normal, with mean 0 and covariance 

On the other hand, H, converges to a-projectionmatrix H with the property 

for any a E R, v E Rh. Since p* is of the form vA, we see that the asymptotic 
covariance for Hn(i;1/2sn) is an idempotent matrix with rank p - h after being 
rescaled by A-', proving the desired result. 
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